Operator-valued positive definite kernels and differentiable universality
نویسندگان
چکیده
We present a characterization for positive definite operator-valued kernel to be universal or [Formula: see text]-universal, and apply these characterizations family of kernels that are shown well behaved. Later, we obtain an differentiable text]-universal text]-universal. In order such examples, generalize some well-known results concerning the structure context. On examples is given emphasis on radial Euclidean spaces.
منابع مشابه
Operator Monotone Functions, Positive Definite Kernels and Majorization
Let f(t) be a real continuous function on an interval, and consider the operator function f(X) defined for Hermitian operators X. We will show that if f(X) is increasing w.r.t. the operator order, then for F (t) = ∫ f(t)dt the operator function F (X) is convex. Let h(t) and g(t) be C1 functions defined on an interval I. Suppose h(t) is non-decreasing and g(t) is increasing. Then we will define ...
متن کاملPositive Definite Rational Kernels
Kernel methods are widely used in statistical learning techniques. We recently introduced a general kernel framework based on weighted transducers or rational relations, rational kernels, to extend kernel methods to the analysis of variable-length sequences or more generally weighted automata. These kernels are efficient to compute and have been successfully used in applications such as spoken-...
متن کاملCertain Positive-definite Kernels
In one way or another, the extension of the standard Brownian motion process {B¡: t e [0,oo)} to a (Gaussian) random field {Bt: t € R+} involves a proof of the positive semi-definiteness of the kernel used to generalize p(s, 1) = cov(Bs,B¡) = s A t to multidimensional time. Simple direct analytical proofs are provided here for the cases of (i) the Levy multiparameter Brownian motion, (ii) the C...
متن کاملConditionally Positive Definite Kernels and Pontryagin Spaces
Conditionally positive definite kernels provide a powerful tool for scattered data approximation. Many nice properties of such methods follow from an underlying reproducing kernel structure. While the connection between positive definite kernels and reproducing kernel Hilbert spaces is well understood, the analog relation between conditionally positive definite kernels and reproducing kernel Po...
متن کاملPositive Definite Kernels and Boundary Spaces
We consider a kernel based harmonic analysis of “boundary,” and boundary representations. Our setting is general: certain classes of positive definite kernels. Our theorems extend (and are motivated by) results and notions from classical harmonic analysis on the disk. Our positive definite kernels include those defined on infinite discrete sets, for example sets of vertices in electrical networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Applications
سال: 2022
ISSN: ['1793-6861', '0219-5305']
DOI: https://doi.org/10.1142/s0219530521500378